290 research outputs found

    Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain

    Get PDF
    Lower and upper limits on size are established for quantum boxes. The lower limit is shown to result from a critical size below which bound electronic states no longer exist. This critical size is different for electrons and holes. The optical gain of arrays of quantum boxes is computed taking into account the inhomogenous broadening of the gain spectrum resulting from fabricational variations in quantum box size and shape. The dependence of maximum possible gain on an rms quantum box roughness amplitude is determined. For high gain operation a medium composed of quantum boxes does not offer significant advantages over a conventional bulk semiconductor unless quantum box fabricational tolerances are tightly controlled. For low gain operation, however, arrays of quantum boxes may offer the unique advantage of optical transparency at zero excitation. This property does not require excellent fabricational control and may make possible ultralow threshold semiconductor lasers and low noise optical amplifiers

    Observation of Kerr nonlinearity in microcavities at room temperature

    Get PDF
    We have devised and experimentally verified a method for observation of the optical Kerr effect in microcavities at room temperature. The technique discriminates against the much larger and typically dominant thermal component of nonlinearity by using its relatively slow frequency response. Measurement of the Kerr coefficient or equivalently of the third-order nonlinear susceptibility of the cavity material is demonstrated for a silica microcavity. With this approach, useful information about the characteristic thermal response time in microresonators can also be acquired

    Highly nondegenerate four-wave mixing efficiency of an asymmetric coupled quantum well structure

    Get PDF
    An asymmetric coupled quantum well structure is theoretically investigated as a means of tailoring the conversion efficiency of the four-wave mixing process at terahertz detuning rates. In this structure, a coherent electronic oscillation between the two wells can be excited that introduces a resonance peak in the four-wave mixing frequency response. A calculation based on the density matrix formalism shows that an increase in the power conversion efficiency on the order of 10 dB can be attained at the selected resonance frequency for low temperature operation. Finally, we propose a novel technique for exciting the interwell oscillations that takes advantage of the polarization dependence of the interband optical transitions in alternating strain quantum wells

    Modal Spectroscopy of Optoexcited Vibrations of a Micron-Scale On-Chip Resonator at Greater than 1 GHz Frequency

    Get PDF
    We analyze experimentally and theoretically >1 GHz optoexcited mechanical vibration in an on-chip micron-scaled sphere. Different eigen-mechanical modes are excited upon demand by the centrifugal radiation pressure of the optical whispering-gallery-mode, enabling an optomechanical modal spectroscopy investigation of many vibrational modes. Spectral analysis of the light emitted from the device enables deduction of its natural vibrational modes in analogy with spectroscopy of a molecule's vibrational levels, and its eccentricity perturbation is shown to induce spectral splitting

    Four-wave mixing and generation of terahertz radiation in an alternating-strain coupled quantum-well structure

    Get PDF
    We propose a scheme for exciting steady-state tunneling oscillations of an electronic wave packet in a semiconductor coupled quantum-well structure with strain of the opposite polarity in the two wells. A detailed study of the four-wave mixing process in this structure is then presented, based on the density matrix formalism. Our results show that a resonance peak is introduced in the four-wave mixing frequency response at the tunneling frequency, leading to a significant enhancement in the wavelength conversion efficiency for low temperature operation. Furthermore, we consider this structure under the same excitation condition as a potential source of coherent radiation in, the terahertz frequency band

    Parasitic-free modulation of semiconductor lasers

    Get PDF
    Active-layer photomixing is a technique for modulating semiconductor lasers with nearly perfect immunity to device parasitics. Measurements of the intrinsic modulation response of a laser diode using this technique at temperatures as low as 4.2 K are discussed. From these measurements, the temperature dependence of important dynamical parameters is determined. In addition, this provides a stringent test of the active-layer photomixing technique since parasitic response is degraded, while the intrinsic response is improved for low-temperature operation. At 4.2 K, the ideal intrinsic response is measured for frequencies as high as 15 GHz despite an estimated parasitic corner frequency of 410 MHz

    Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium

    Get PDF
    We demonstrate efficient coupling to the optical Whispering-Gallery (WG) modes of a fluidic resonator consisting of a droplet embedded in a liquid medium. Unlike previous experiments the droplet is not levitated in an optical or electrostatic trap and free space coupling is replaced by phase-matched, waveguide coupling using a fiber-taper. We have observed critical coupling to fundamental WG modes of a 600 μm diameter water droplet at 980 nm. The experimental challenges towards making, stabilizing and coupling to the droplet resonators are addressed in this paper

    Approximate expressions for modulation speed and threshold for performance optimization of biaxially compressive strain quantum-well lasers

    Get PDF
    Simple analytical expressions for transparency, threshold, and relaxation oscillation corner frequency are derived for biaxial strain quantum-well lasers. An optimal operating point loss for high speed operation (in the absence of nonlinear gain) is established which varies as the square root of the number of quantum wells. The corresponding relaxation oscillation frequency is found to depend only on fundamental quantities. Its power dependence is [vR(max) = (87 GHz õm^3/mW) (Powerout/Vmode)^1/2) where Vmode is the mode volume

    Equivalent circuit model for active-layer photomixing: Parasitic-free modulation of semiconductor lasers

    Get PDF
    Direct modulation of a laser diode by active-layer photomixing is studied in terms of an equivalent circuit model. The model shows that this modulation technique achieves nearly perfect immunity to package, chip, and junction-related parasitic effects so that the measured modulation response reflects the intrinsic carrier-photon dynamics. The nonlinear gain effect is included in the model

    Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects

    Get PDF
    We present an analytical technique for determining polarization-dependent optical transition matrix elements in quantum wires which rigorously incorporates the effects of band coupling. Using this technique, we examine the polarization anisotropy of the two lowest energy optical transitions in a GaAs quantum wire. Contrary to assumptions employed in previous studies, we show that the valence states involved in these transitions are a strong admixture of light and heavy hole character. The lowest energy transition is found to be four times stronger for electric fields oriented parallel to the wire than for the perpendicular orientation. In contrast, the next highest transition does not interact with optical waves polarized along the wire axis. We discuss sources of error which arise in simpler one-band models of this phenomenon in addition to the neglect of band coupling and show that the coupled band model presented here is essential for predicting these effects
    corecore